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ABSTRACT

We investigate how hardware specifications can impact the final run time and the required number of physical qubits to achieve a quantum
advantage in the fault tolerant regime. Within a particular time frame, both the code cycle time and the number of achievable physical qubits
may vary by orders of magnitude between different quantum hardware designs. We start with logical resource requirements corresponding
to a quantum advantage for a particular chemistry application, simulating the FeMo-co molecule, and explore to what extent slower code
cycle times can be mitigated by using additional qubits. We show that in certain situations, architectures with considerably slower code cycle
times will still be able to reach desirable run times, provided enough physical qubits are available. We utilize various space and time optimi-
zation strategies that have been previously considered within the field of error-correcting surface codes. In particular, we compare two dis-
tinct methods of parallelization: Game of Surface Code’s Units and AutoCCZ factories. Finally, we calculate the number of physical qubits
required to break the 256-bit elliptic curve encryption of keys in the Bitcoin network within the small available time frame in which it would
actually pose a threat to do so. It would require 317 � 106 physical qubits to break the encryption within one hour using the surface code, a
code cycle time of 1 ls, a reaction time of 10 ls, and a physical gate error of 10�3. To instead break the encryption within one day, it would
require 13 � 106 physical qubits.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0073075

I. INTRODUCTION

With the advent of quantum computers, the race to a quantum
computational advantage has gained serious traction in both the aca-
demic and commercial sectors. Recently, quantum supremacy has
been claimed1,2 on quantum devices with tens of qubits. However, the
targeted problems solved were theoretical in nature, and not relevant
to industrial applications. Quantum advantage, conversely, is a stron-
ger form of supremacy that shows an industrially relevant computa-
tional problem solved in a reasonable time-frame that would be
practically impossible to do using any classical supercomputer. There
is a large physical qubit overhead associated with quantum error cor-
rection which is required to run some of the most powerful algo-
rithms. There are many factors that will determine the ability for
different quantum computing architectures to scale. Consequently,
within a given time frame, the maximum size (qubit count) of a device
could vary by orders of magnitude. The code cycle time (base unit of

operation in the surface code) will also vary considerably between plat-
forms. Therefore, it is of interest to investigate the interplay between
the code cycle time and the number of achievable qubits and the
resulting impact on the feasibility for a particular device to achieve a
quantum advantage. We calculate the physical qubit and run time
requirement for relevant problems in chemistry and cryptography
with a surface code error-corrected quantum computer, comparing
parameters typical to various types of hardware realizations.

Algorithms that are tailored to Noisy Intermediate Scale Quantum
(NISQ) devices generally consist of a hybrid approach, where a low
depth circuit is parameterized and iterated through a classical optimizer.
These NISQ algorithms are more often heuristic in nature than their
fault tolerant counterparts, and so, providing rigorous resource esti-
mates can be more challenging. Many of the most powerful quantum
algorithms require a circuit depth that greatly exceeds the capabilities of
NISQ era devices, and for some applications, the number of required
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logical qubits and operations is known. The quantum threshold theo-
rem states that a quantum computer using error correction schemes,
and a physical error below a certain threshold, can suppress the logical
error rate to arbitrary low levels.3–5 Therefore, one could run an algo-
rithm with an arbitrary long circuit depth, provided enough qubits are
available to perform the required level of error correction. There is a
large time overhead for performing logical operations at the error-
corrected level relative to operations performed on physical qubits. For
the foreseeable future, classical computers will have a clock rate that is
orders of magnitude faster than error-corrected quantum computers.
To determine the problem size at which a quantum computer will out-
perform a classical computer, one must consider both the algorithmic
speed up and the relative difference between their associated clock rates.
By making use of parallelization schemes, quantum computers can
speed up the effective rate of logical operations at the cost of additional
qubits, and so the ability to scale to large enough device sizes will also
play a role in determining the feasibility of reaching desirable run times.

The surface code6–8 is the most researched error correction tech-
nique, particularly in regard to end-to-end physical resource estima-
tion. There are many other error correction techniques available, and
the best choice will likely depend on the underlying architecture’s
characteristics, such as the available physical qubit–qubit connectivity.
Superconducting qubits are one of the leading quantum computing
platforms, and these devices generally consist of static qubits arranged
on a grid where only nearest neighbor interactions are natively avail-
able. Long-distance connections must be enabled by sequences of
nearest neighbor swap operations, which, in the context of a NISQ
device, may limit their computational power.9,10 The limited connec-
tivity of superconducting qubits in part motivated the continued
research into the surface code, which relies only on nearest neighbor
interactions between physical qubits arranged on a 2D grid. In the fol-
lowing, we briefly introduce some of the alternative error correction
techniques to the 2D surface code. Error correction codes that rely on
global interactions at the physical level have favorable encoding rates
as a function of code distance,11 but enabling this global connectivity
on large devices may be challenging, or the connectivity overheads
may outweigh the benefits relative to closer-range-connectivity codes.
Entanglement distribution may be a viable method of enabling distant
connectivity for large-scale devices with limited physical connectivity
in the limit of large reserves of quantum memory.12 Higher dimen-
sional error correction codes can have access to a greater range of
transversal gates,13,14 which may considerably improve final run-
times, where transversal implies that each qubit in a code block is acted
on by at most a single physical gate, and each code block is corrected
independently when an error occurs. Realizing this 3D (or greater)
physical connectivity could be challenging for many of the current
quantum platforms; photonic-interconnected modules may be the
most flexible architecture with regard to its possible connectivity
graph;15 however, currently, achieved connection speeds would pre-
sent a considerable bottleneck.16 A variant of the 3D surface code may
still be realizable with hardware that is only scalable in two dimensions
because the thickness (extra dimension) can be made relatively small
and independent of code distance.17 In Sec. II, we highlight the surface
code in more detail and include relevant considerations for physical
resource estimation.

Here, we highlight some of the leading quantum computing plat-
forms, their relevant error correction strategies, and contrast their rate

of operations. The surface code is the front-running proposal for error
correction in superconducting devices, and their associated code cycle
times (the base sequence of hardware operations) have been estimated
to be in the range of 0.2–10 ls.6,18 There is a great variety within differ-
ent implementations of trapped ion architectures, particularly with
regard to the method of enabling connectivity. A proposed scalable
trapped ion design that relies on shuttling to enable connectivity and
microwave-based gates has estimated the code cycle time to be
235 ls.19 For this shuttling-based design, alternative error correction
protocols may be more effective than the surface code due to the
variable-mid-range connectivity that is possible, but in this work, we
constrain ourselves to the surface code. Small trapped ion modules
connected via photonic interconnects have been envisaged with the
surface code,20 but due to their extremely flexible connectivity, higher
dimensional error correction codes may one day be utilized. The code
cycle time for trapped ions with photonic interconnects would depend
on how the physical qubits are distributed across modules; one
approach advocates for two tiers of encoding to minimize the use of
the slower interconnects.21 Trapped ion architectures have achieved
some of the highest gate fidelities to date;22–26 the lower the base physi-
cal error rate, the lower the code distance will need to be in the error
correction protocol, and therefore, fewer physical qubits would be
needed per logical qubit. A fault tolerant silicon-based architecture has
been proposed using the surface code with code cycles estimated to be
1.2ms.27 The error correction choice for photonic devices will depend
on the underlying design; the primary candidate for a particular fault
tolerant proposal28 is the Raussendorf-Harrington-Goyal (RHG) lat-
tice.29,30 The degree to which an architecture is scalable will vary greatly
between architecture types and within particular stages of development.

In this work, we provide physical resource estimates to achieve a
quantum advantage with a quantum computer using the surface code.
Using some of the latest time optimization strategies,18,31,32 we investi-
gate the interplay between the code cycle time and the number of
achievable physical qubits in the underlying architecture. In Secs. I A
and I B, we introduc quantum algorithms, which have been hypothe-
sized to offer a disruptive quantum advantage for industry-relevant
applications. We first provide a brief overview of quantum computing
for chemistry and highlight the logical resource requirements for a
quantum advantage use case, simulating the ground state of the
FeMo-co molecule, which we use as the starting point for our investi-
gation. We then calculate the number of physical qubits that are
required to break the elliptic curve encryption of Bitcoin keys within
the time frame that it actually poses a threat to do, as a function of the
code cycle time.

A. Fault tolerant quantum chemistry

When numerically simulating quantum chemistry problems, typ-
ically, a set of independent functions, known as a basis set, are intro-
duced to describe the physical wave function of the system. This
introduction does not remedy the exponential increase in parameters
with system size but enables one to balance the achievable accuracy
against the required computational resources. Feynman was perhaps
the first to envisage a quantum computer and its application to the
simulation of physics and chemistry.33 It is now expected that quan-
tum computers will eventually be able to perform electronic structure
calculations with a quality of solution typical to the most accurate
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classical methods but with run times comparable to the approximate
techniques, such as density functional theory.

The quantum phase estimation (QPE) algorithm generates eigen-
values for a general unitary operator, and it can be applied to quantum
chemistry to find the eigenenergies of chemistry Hamiltonians to FCI
(full configuration interaction, i.e., exact) precision. Unlike the varia-
tional quantum eigensolver (VQE)34 that involves many iterations
[Oð1=�2Þ with accuracy �] of low depth circuits, the QPE algorithm
requires Oð1Þ iterations of a circuit with a depth scaling as Oð1=�Þ.
The large depth required in the QPE algorithm means that it will only
be possible with error corrected devices because NISQ devices would
lose their coherence long before the end of the circuit.

Hamiltonian simulation is used as a subroutine in the quantum
phase estimation (QPE) algorithm, and it involves constructing a
quantum circuit that approximates the evolution of the input state
according to the Hamiltonian. Two of the main paradigms for
Hamiltonian simulation are trotterization and qubitization.
Qubitization35,36 can be used to simulate the Hamiltonian evolution
by using quantum signal processing,37 but more commonly, it is used
to generate a quantum walk38 upon which one can directly perform
phase estimation. Qubitization is perhaps the most favored method
for simulating chemistry Hamiltonian dynamics because it achieves
the provably optimal scaling in query complexity and approximation
error albeit while requiring more logical qubits than other methods.

Previous work has investigated the potential for quantum com-
puters to provide a quantum advantage by performing ground state
energy estimations on the catalytic complex known as FeMo-co.39–42

FeMo-co is a large molecule expressed in biology, which reduces N2

from the atmosphere, and a better understanding of this process could
provide a significant commercial advantage by improving the effi-
ciency of nitrogen fixation for the production of ammonia for fertil-
izer. In this work, we start our investigation with the latest logical
resource requirements for simulating FeMo-co and calculate the num-
ber of physical qubits required to reach a desirable run time as a func-
tion of the code cycle time of the hardware.

B. Breaking Bitcoin’s encryption

Bitcoin, the first decentralized cryptocurrency, is continuing to
grow in popularity. Bitcoin has properties that make it desirable as a
hedge against inflation, for example, the rate of supply is known,
decreases with time, and is entirely independent of demand. The decen-
tralized nature of the blockchain makes it censor resistant, and it can
operate in a trustless manner. There are two main ways in which a quan-
tum computer may pose a threat to the Bitcoin network.43,44 The first
and least likely is the threat to the proof of work mechanism (mining)
for which a quantum computer may achieve a quadratic speedup on the
hashing of the SHA256 protocol with the Grover’s algorithm.45 The algo-
rithmic speedup is unlikely to make up for the considerably slower clock
cycle times relative to state of the art classical computing for the foresee-
able future.44 The second and more serious threat would be an attack on
the elliptic curve encryption of signatures. Bitcoin uses the Elliptic Curve
Digital Signature Algorithm (ECDSA) that relies on the hardness of the
Elliptic Curve Discrete Log Problem (ECDLP), and a modified version of
Shor’s algorithm46–48 can provide an exponential speedup using a quan-
tum computer for solving this problem. Bitcoin uses ECDSA to convert
between the public and private keys, which are used when performing
transactions. With best practices (using new addresses for each

transaction), the only point at which a public key is available and relevant
to a eavesdropper is after a transaction has been broadcast to the network
but prior to its acceptance within the blockchain. In this window, trans-
actions wait in the “mem pool” for an amount of time dependent on the
fee paid; the time taken for this process is on average 10min, but it can
often take much longer. Gidney and Ekerå estimated that it would
require 20 � 106 noisy qubits and 8h to break the 2048 Rivest-Shamir-
Adleman (RSA) encryption,31 which is of a comparable difficulty to the
EC encryption of Bitcoin. The maximum acceptable run time for break-
ing Bitcoin’s encryption makes it particularly well suited to our investiga-
tion into the cost of parallelization and the interplay between the code
cycle time and scalability, which we present in Sec. III.

In Sec. II, we introduce considerations for error correction and
provide an overview of the space and time optimizations within the
surface code that we make use of in this work.

II. SPACE AND TIME OPTIMIZATIONS IN THE
SURFACE CODE

In this section, we briefly introduce quantum error correction in
the context of resource estimation and explain some of the available
strategies within a surface code setup, which are selected based upon a
preference for space (physical qubit requirement) or time (final run
time of the algorithm).

A. The available gate set

An important consideration for quantum error correction is the
available logical gate set, which is generally more restricted than the
underlying physical gate set. The Clifford gates are those that map
Pauli operators onto other Pauli operators, and the set can be gener-
ated by various combinations of the set {H, CNOT, S}, where the S
gate is the Pauli Z1=2. The Gottesman–Knill theorem49 states that any
Clifford circuit of finite size can be simulated in polynomial time (effi-
ciently) with a classical computer. The Clifford gate set in combination
with any non-Clifford gate is sufficient for universal quantum compu-
tation, and two of the most commonly considered non-Clifford gates
are the T gate (Z1=4) and the Toffoli gate (control-control-not). Any
arbitrary angle single qubit gate can be decomposed into long sequen-
ces of the fixed angle H and T gates with chain length scaling with
desired precision, as per the Solovay–Kitaev theorem,50

T ¼
1 0

0 eip=4

 !
; S ¼

1 0

0 i

 !
;

H ¼ 1ffiffiffi
2
p

1 1

1 �1

 !
; CNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBBB@

1
CCCCA:

(1)

The surface code has transversal access to the CNOT, and the H
and S gates can be realized with a low overhead using other tech-
niques.51 The T-gate is not transversal in the surface code, and it must
be effectuated using methods that incur a large space-time volume
overhead relative to the other gates listed here. The T gate can be con-
structed by consuming a magic state, jmi ¼ ðj0i þ eip=4j1i=

ffiffiffi
2
p

,52

where the magic state can be produced with an error proportional to
the physical error, independent of the code distance.53 To create a
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sufficiently high-quality magic state, a distillation protocol54,55 can be
used, which essentially involves converting multiple low fidelity states
into fewer higher fidelity states. Due to the high time cost associated
with magic state distillation (the production and consumption), we can
make a simplifying assumption that the time required to perform the
T-gates effectively determines the final run time of an algorithm, as the
relative cost of performing the Clifford gates fault-tolerantly is negligi-
ble. Some algorithms more naturally lend themselves to being expressed
in terms of Toffoli gates, and there exist distinct specialized distillation
factories to produce the magic states required to effectuate both of these
non-Clifford operations. A Toffoli gate can be decomposed using 4T
gates,56 whereas the control-control-Z (CCZ) states normally produced
for the Toffoli gate can be efficiently catalyzed into two T states.57

B. Error correction and logical error rate

A logical qubit in the surface code consists of data qubits, which
store the quantum information, and ancillary qubits, which are used
for stabilizer measurements that nondestructively extract error infor-
mation from the data qubits. The distance, d, of a code represents the
minimum size of physical error that can lead to a logical error, and in
the surface code, the number of physical qubits per logical qubit scales
as 2d2. The logical error rate per logical qubit, pL, per code cycle as a
function of the base physical error rate, p, can be approximated by58

pL ¼ 0:1ð100pÞðdþ1Þ=2: (2)

The efficiency of the error protection decreases as the base physical
error rate approaches from below the threshold of the code (here
assumed to be 1%). For feasible final resource estimates, the base physi-
cal error rate will need to be close to or below 10�3, where the necessary
code distance is chosen based upon both the base physical error rate
and the length of the desired computation. The physical error model
here is the assumption that each physical operation has a probability p
of also introducing a random Pauli error. The achieved gate fidelity (the
go-to metric for experimentalists) cannot be directly converted with
confidence to the physical error rate, without further information. The
cause of the gate infidelity, where it exists on the spectrum between the
two extremes of depolarizing error (decoherent noise) and unitary error
(coherent noise), will determine the corresponding gate error rate. The
best-case situation is the one-to-one mapping between the gate error
(one-fidelity) and depolarizing error rate, and this has often been an
assumption in the experimentally focused literature. A measure of gate
fidelity alone cannot determine the unitarity of the noise, i.e., the relative
contribution of coherent and decoherent errors. Coherent errors, such
as an over rotation of an intended gate, can positively interfere with
each other and, therefore, cause worse case errors than those that are
decoherent. The worst case scaling of the physical error rate, p, with
gate fidelity F and dimension of gate D is p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ 1Þð1� FÞ

p
.59

To illustrate an example of this worst case scenario on noise quality, to
guarantee an error rate of below 1%, a gate fidelity of 99.9995% would
be required.59 To determine where on the unitarity spectrum, the actual
hardware noise exists, protocols based on randomized bench marking
can be used.60,61 This information can then be used to estimate the base
physical error rate with confidence.59,62

C. Code cycle, reaction time, and measurement depth

The code cycle is the base unit of operation in the surface code,
and it involves performing a full round of stabilizer measurements.

As all operations in the computer are assumed to be subject to errors,
including the stabilizer measurement process, the code cycle needs to
be repeated d times before corrections can be applied. We will refer to
the time it takes to perform these d rounds of code cycles as a “beat,”
where many surface code operations will have a time cost measured in
beats. A fault tolerant quantum computer using the surface code can
be envisaged as partitioned into two sections: data-blocks that con-
sume magic states to effectuate T gates for the desired algorithm and
distillation-blocks that produce high fidelity magic states. Each of these
constructs in the surface code consists of a number of logical qubits,
sometimes referred to as tiles, and each tile contains 2d2 physical
qubits. The data block has a size scaling with the number of abstract
qubits required for the algorithm, and this then sets the minimum
required number of physical qubits when paired with a single magic
state factory and given the code distance.

The T (or Toffoli) gates of an algorithm can be arranged into
layers of gates (measurement layers), where all of the gates within a
layer could potentially be executed simultaneously. Measurement
layers are sometimes instead referred to as T layers when the relevant
non-Clifford gate is the T gate, and the measurement (T) depth is the
number of measurement layers in the algorithm. When a magic state
is consumed by the data block, a Pauli product measurement is per-
formed to determine whether an error has occurred, so that a
(Clifford) correction can be applied if required. The algorithm cannot
proceed to the next measurement layer until all of the necessary cor-
rections have been applied in the current layer, and this process
requires a classical computation (decoding and feed-forward). The
characteristic time cost that includes the quantum measurement, clas-
sical communication, and classical computation is referred to as the
“reaction time, RT.” It is conjectured that the fastest an error-
corrected quantum algorithm can run, i.e., the time optimal limit63 is
by spending only one reaction time per measurement layer, indepen-
dent of code distance, and we will refer to this as reaction limited. In
the case of superconducting devices that have relatively fast physical
gates and measurements, the reaction time may be dominated by the
classical communication and computation. A reaction time of 10 ls
has been used in recent resource estimation work,31 as compared
to the 1 ls code cycle time, which requires both physical two qubit
operations and measurements. In this work, we have defined the
reaction time (RT) as a function of the code cycle time (CC) with
RT ¼ ðCC=4Þ þ 10 ls unless otherwise stated. This assumption is
motivated by the fact that generally, the quantummeasurement within
the code cycle represents a fraction of the total time, for example, with
the shuttling-based trapped ion architecture with a code cycle time of
235 ls, the quantum measurement is estimated to represent �10%
of that total time. We include a code cycle independent additional cost
of 10ls to represent the (somewhat) hardware independent classical
processing. With our resource estimation tool, which is available upon
request, one could recreate the results of this paper with a different
relationship between the code cycle time and reaction time. If particu-
lar surface code set up contained only a single distillation factory, then
the rate of computation would likely not be limited by the reaction
time but instead by the rate of magic state production. We refer to the
regime of being limited by magic state production as “tick” limited.
There are then three relevant regimes for surface code strategies, which
are separated by the limiting factor of computation rate. Beat limited
implies that the limiting factor is the rate of magic state consumption
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by the data block, tick limited, the rate of magic state production by
the distillation blocks, and reaction limited, where the conjectured
time-optimal limit is reached, and one reaction time is spent per mea-
surement layer.

In this work, we utilize and compare two distinct strategies of
incrementally trading qubits for run-time up to the reaction limit and
introduce them later in this section.

D. Distillation and topological errors

When choosing a surface code setup, one must decide upon the
acceptable final success probability, where, in principle, a success prob-
ability greater than 50% would be sufficient to reach the desired preci-
sion by repeating the computation. The acceptable success probability
then allows one an additional method of trading space for time, as the
lower the acceptable success probability, the lower the various code
distances would need to be. There are two contributions to the proba-
bility of failure: the topological error associated with the data block
and the total distillation error. The topological error is the chance for
at least a single logical error within the data block across the entirety of
the algorithm, which can be calculated with the product of the number
of logical qubits, the number of code cycles required for the algorithm,
and the logical error rate, where the logical error rate is defined in Eq.
(2) by the base physical error rate and the code distance on the data
block. The total distillation error corresponds to the probability of at
least a single faulty magic state, which is calculated by the product of
the total required number of required magic states and the error rate
per state. The error rate per state is determined by the particular fac-
tory chosen and its associated code distances. We can then consider
the final failure probability as the linear sum of the topological error
and total distillation error.

In this work, we set the allowable total distillation error at 5%,
implying that across the entire algorithm, the probability that a magic
state is generated with an error is 5%. We choose the appropriate dis-
tillation protocol to achieve this error rate, by selecting between T fac-
tory protocols of Litinski53 and by adjusting the level 1 and level 2
code distances of the AutoCCZ factory. The choice of 5% is in part
motivated by the capacity of the AutoCCZ factory to reach a sufficient
fidelity, given the number of magic states required in the quantum
advantage cases we address in this work. We set the final topological
error to be 1% and choose the appropriate code distance to achieve
this by considering the total number of code cycles that the algorithm
must run for. This leads to a total final error (failure probability) of
�6%. In the Litinski’s work, a final error of 2% is chosen,18 whereas in
the Gidney and Ekerå’s work of breaking RSA encryption, the final
error is 33.4%. The best choice of final error tolerance will depend on
the type of problem being solved, in the case where the result being
correct is heralded (e.g., factoring), one can accept large probabilities
of failure, leading to a flexible trade-off between space and effective
run time (including retries). Therefore, in this case, the choice should
be framed as an optimization problem as opposed to an arbitrary
threshold decision. Algorithms that require statistical accumulation
from multiple runs may need the failure rate to be considerably lower
than in the heralded type algorithms. Using our resource estimation
tool, one could investigate the impact of different final failure
probabilities.

E. Routing at the error corrected level

It is necessary to move logical information from one area of the
device to another, and perhaps the most common requirement is the
transport of magic states from the distillation factories to the data
blocks. Analogous to physical qubits in superconducting devices that
use logical operations to perform swaps, one can imagine performing
swap operations between logical qubits in the surface code. However,
alternative techniques are more often considered for enabling long-
range interactions with topological error correcting codes. Using lattice
surgery-based methods, long range interactions (CNOTs) can be
enabled in d code cycles (1 beat), essentially independent of the dis-
tance between the two points, so long as there is a chain of free ancil-
lary qubits between them. We refer to this method as entanglement
swapping. An ancillary logical qubit can only contribute to one routing
chain at a time (per beat). When defining the layout of an error correc-
tion set up, which involves choosing the number of distillation facto-
ries and orienting them with respect to the data blocks, one must also
ensure there is sufficient ancillary routing space to enable the required
degree of data transfer between the relevant areas. The degree of data
transfer, or alternatively stated the degree of parallelization in the exe-
cution of the algorithm, is often characterized by the number of magic
states consumed per beat across the entire data block. With a data
block arranged into rows with an access hallway between each row
(consisting of ancillary logical qubits), there are two unique ways of
touching each data qubit, if this is deemed insufficient, entangled cop-
ies of the data rows can be created to ensure there are enough unique
paths between the factories and the data qubits. In Sec. IIH, we present
our choice of the routing overhead factor for entanglement swapping
as a function of the degree of parallelization using AutoCCZ factories.

F. Considering physical mid-range connectivity

In this section, we briefly consider the potential impacts on the
required resources when the underlying architecture has access to flex-
ible mid-range connectivity between physical qubits. For supercon-
ducting devices, two qubit operations can only be performed between
nearest neighbor physical qubits, and so long-range interactions must
be enabled by sequences of costly logical swap operations. Alternative
hardware may have access to low overhead long range interactions
between physical qubits, for example, photons are readily transported
long distances, which is relevant to both photon-only hardware and
for connecting small modules of trapped ions with photonic intercon-
nects. In the blueprint for a shuttling-based trapped ion architecture,19

a single system is envisaged, comprised of iterable micro-fabricated
chips, connected via electric fields, which allow for physical shuttling
between modules. High state fidelity adiabatic shuttling has been dem-
onstrated with a speed of �20 ms�1;64 diabatic techniques65–67 can
enable much greater shuttling speeds, and�80 ms�1 has been demon-
strated.66 Lau and James calculate that the maximum speed a 40Caþ

ion can be transported across a 100lm trap without excessive error is
10 000 ms�1.68 For NISQ size devices, all-to-all connectivity should be
achievable with high fidelity (relative to two qubit operations) using
the shuttling-only approach,10 but physically shuttling completely
across a device with over a million physical qubits is unlikely to be fea-
sible due to the associated time cost. Utilization of mid-range connec-
tivity may still enable a reduction in the routing overhead associated
with entanglement swapping.
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While very long-range shuttling operations may be protected
from error by periodic cooling operations and mid-circuit syndrome
extraction and correction, the total time cost must be considered.
With entanglement swapping, long-range interactions can be enabled
between logical qubits in the surface code in a single beat, provided
there are sufficient available ancilla qubits between the locations. To
contrast this capability, we estimate the range at which physical shut-
tling may remain competitive with entanglement swapping. Assuming
a code distance of 30, and logical qubits distributed across a 2D square
grid, we estimate that a logical qubit could interact via physical shut-
tling with another logical qubit in the range of 3–30 grid spaces away
within a single beat (d code cycles), depending on physical ion density
and shuttling speed. While this is, indeed, unlikely to be sufficient for
mediating all long-range interactions between logical qubits, the capa-
bility of low-cost mid-range physical connectivity could make the
transversal CNOT preferable to the more usually considered lattice
surgery-based methods. Guti�errez et al. have investigated the experi-
mental regimes at which the transversal CNOT may outperform the
lattice surgery-based methods for trapped ions,69 and for particular
values of error contributions, the transversal CNOTmay be performed
a factor 10� faster. If the transversal CNOT is expected to require less
time than the lattice surgery-based CNOT, then this would directly
impact the rate of magic state production of distillation factories and,
therefore, could reduce the total qubit overhead in the highly parallel-
ized regime. Furthermore, mid-range physical connectivity could con-
siderably reduce the qubit footprint of distillation factories by
eliminating the need for interior ancillary routing space for entangle-
ment swapping. Alternative error correction strategies to the 2D sur-
face code11,17 may be achievable on hardware with flexible mid-range
connectivity. We leave a more detailed analysis of the potential benefit
of mid-range connectivity as future work.

In Subsection IIG, we introduce the Game of Surface Codes
method of trading space for time,18 and in Subsection IIH, the
AutoCCZ method,31 where we also include some more detailed assump-
tions on the necessary routing overhead for entanglement swapping.

G. Game of surface codes

In the work of Litinski,18 various data blocks are presented, which
vary in their rate of T-gate effectuation (magic state consumption) and
the number of required physical qubits. There are numerous distilla-
tion protocols, each of which varies with regard to the output fidelity,
required number of physical qubits, and the rate of production.
Distillation blocks can be parallelized, and this enables further space-
time trade-offs.

We make use of distillation strategies presented by Litinski,53

where the distance associated with the distillation blocks is fine tuned
and separate from the distance associated with the data blocks. The
data blocks have a required code distance set by the total number of
logical qubits and the total number of code cycles required to run the
entire algorithm. With the total number of T gates in the algorithm,
Tcount, the distillation blocks only need a code distance sufficient to
produce magic states with an error lower than 1=Tcount . The distilla-
tion blocks use a certain number of qubits and only need to be pro-
tected for a certain number of code cycles (corresponding to one full
round of distillation), and these are generally both small relative to the
requirements of the data blocks. This method of individual calibration
of distance for the data and distillation blocks is in contrast to a prior

method,18 where both block types are attributed the same code
distance.

In the GoSC scheme, Clifford gates are addressed explicitly via
Clifford tracking, i.e., all Clifford gates are commuted to the end of the
circuit and absorbed into measurements. This turns T gates into Pauli
product rotations, and measurements into Pauli product measure-
ments. In general, these Pauli product rotations can be big multi-qubit
operations. To account for the generalized worst-case algorithm,
which may have these multi-qubit operations, the maximum rate at
which the data block can consume a magic state is defined as one state
per beat (d code cycles). If the input circuit is known, then it will some-
times be possible to arrange the data blocks in such a way, so that
more than one state can be consumed per beat. In this investigation,
we do not consider the details of the input circuit and instead rely only
meta details, such as abstract qubit count, total T count, and the mea-
surement depth. Our utilization of the GoSC method should then be
considered an upper-bound configuration, i.e., guaranteed to be able
to support any algorithm configuration given the meta details. The
number of distillation factories can be chosen to match the production
rate to the consumption rate of the data block, at which point, we may
describe the strategy as beat limited.

In the work of Litinski,18 further time optimizations are pre-
sented, which can be utilized to reach reaction limit where one reac-
tion time is spent per measurement (T) layer. The reaction limited
strategy is set by the total number of measurement layers, i.e., the mea-
surement depth (Tdepth), as opposed to the total T gate count (Tcount)
of the beat limited strategy. The average number of parallel-executable
T gates per layer (Tlayer ¼ Tcount=Tdepth) varies across particular algo-
rithms, and there exist methods to optimize circuits to minimize either
the Tcount and Tdepth or the circuit width.

70,71 The Litinski’s method of
speeding computation up beyond the beat limited case utilizes “units,”
which combine the previous constructions of data and distillation
blocks. The number of units can be increased until the time optimal
limit (henceforth reaction-limited) is reached, where each unit can
work in parallel to address a set of measurement layers. This does not
contradict the previously provided definition of measurement layers,
as although the units can parallelize aspects of the work, the layers
must still be stitched back together requiring one reaction time per
measurement layer for corrections. The reaction limit then defines the
maximum number of units that can be utilized. For an algorithm
requiring n abstract (logical) qubits, with an average of, Tlayer, T gates
per measurement layer, a single unit will consist of 4nþ 4

ffiffiffi
n
p
þ 1 tiles

(logical qubits) for the data block, and 2Tlayer storage tiles. Each unit
requires an amount of time, tu, to process a single measurement layer,
where it is measured in beats and scales as Tlayer þ

ffiffiffi
n
p
þ 3. Each unit

will need a number of distillation factories to match the required pro-
duction rate, which is Tlayer magic states per unit completion time, tu.
With a linear arrangement of units as is considered here and a reaction
time, RT, the reaction (time-optimal) limit is reached with a number
of units nu equal to tu=RT þ 1. The GoSC scheme of going beyond
the beat limited rate initially incurs a space-time overhead but then
allows one to trade linearly (by increasing the number of units) until
the reaction limit is reached.

H. AutoCCZ factories

In the work of Gidney and Ekerå,31 detailed surface code layouts
along with the logical algorithmic developments for breaking RSA
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encryption are provided. The surface code strategy utilizes AutoCCZ
factories,32 which create a magic state that can be consumed to effectu-
ate the non-Clifford Toffoli gate. The “auto” refers to the fact that
these factories create auto-corrected CCZ states, meaning that the
potential correction operation associated with magic state consump-
tion is decoupled and can be performed far away from the data block.

Using this scheme with the AutoCCZ factories, the beat limited
rate can be surpassed without introducing units as is performed in
GoSC. Provided the routing overhead is accounted for, one can con-
tinue to add AutoCCZ factories until the production rate is equal to
the number of Toffoli gates per measurement layer per reaction time,
at which point the reaction limit is reached.

The AutoCCZ factory is characterized by two code distances, cor-
responding to the two levels of the protocol. The factory is a tiered dis-
tillation scheme where the output magic states of the first level are the
input states to the second level. We calculate the final output fidelity
following the ancillary files of Gidney and Ekerå31 as a function of the
two code distances and the base physical error rate. To choose the
optimal two code distances, we assess a wide range of possible values
and select the setup that reaches the desired final distillation error rate
while minimizing the space-time volume of the factory. While techni-
cally possible to maintain a reasonably low distillation error rate with
base physical error rates near the threshold of the code, 10�2, the asso-
ciated code distances required would result in an infeasible physical
qubit overhead. Assuming any code distance is acceptable, the final
distillation error per state, pD, can be described as a function of the
base logical error, p, by pD ¼ 34 300p6, until the threshold of the code
is reached. This relationship was found by numerical fitting. A limit
on the allowable code distance breaks away from this trend before the
threshold, and the lower the limit, the sooner it breaks upward. In
Fig. 2(b), we investigate the impact of the base physical error rate for
the final qubit overhead to reach a desirable run time with the
AutoCCZ method. If the final output fidelity of the AutoCCZ factory
is insufficient, given the desired length of an algorithm and the base
physical error rate, then alternative T gate factories may still be
viable.53

To reach a particular desired run time, assuming it is below
the reaction limit, the number of AutoCCZ factories is chosen as
necessary. Once this footprint arrangement is settled (the combi-
nation of the data block and the number of factories), the last stage
of the calculation is to determine the necessary routing overhead
to account for the degree of parallelization. As described in Sec.
II E, long-distance interactions between the distillation block and
data block can be enabled in one beat, provided there is an avail-
able chain of ancillary logical qubits (routing space) between them.
As each ancillary logical qubit can only contribute to one routing
chain per beat, there may need to be additional unique paths to
account for the degree of parallelization. All of the necessary rout-
ing overhead is strictly accounted for in GoSC, with the construc-
tion and arrangement of the data blocks, which are then duplicated
and distributed across units. In our utilization of AutoCCZ facto-
ries, we define the degree of parallelization as the number of magic
states consumed across the data block per beat. We then ensure
that there is a routing hallway per data block row for every state
consumed per beat, to exceed two hallways per data row; entangled
copies of the data block can be made (which is comparable to the
entangled copies across units in GoSC). Finally, we multiply the

entire area (number of logical qubits) by a factor of 1.2 to ensure
the distillation factories are surrounded by hallways and for some
work space around the data block for arranging routing-chains.
Our utilization of AutoCCZ factories should not be considered a
true upper bound for any generalized circuit, unlike GoSC units.
In Sec. II I, we contrast the two methods further and state our
relative contribution.

I. Problem specification

We start our investigation with the logical resource requirement
set out by Lee et al.42 to simulate FeMoco to chemical accuracy and
assess the feasibility of reaching desirable run times as a function of
the code cycle time and number of achievable physical qubits. In the
work of Lee et al., a detailed surface code strategy is presented with
algorithm specific optimizations, such as minimizing the number of
data qubits that are stored for working. In contrast, the surface code
strategies we utilize do not necessarily require detailed knowledge of
the input circuit and are instead only a function of the logical qubit
count: the T (or Toffoli) count and the measurement depth. This
approach may not yield optimal results for specific algorithms, but it
enables one to effectively estimate physical resource requirements for a
particular algorithm as a function of strategy (the time-space optimiza-
tion spectrum) and the code cycle time. We contrast two strategies:
the first that can be considered to provide upperbound resource esti-
mates for any general circuit input and closely follows the work of
Litinski’s Game of Surface Codes (GoSC).18 We go beyond the peda-
gogical examples provided by Litinski18 by creating an automatic tool
that calculates the physical resources across the space-time optimiza-
tion spectrum and apply it to the algorithmic requirements of quan-
tum advantage use cases. Furthermore, we use the tool to calculate the
number of physical qubits required to reach a specified run time as a
function of the code cycle time of the hardware by utilizing the neces-
sary degree of parallelization. We investigate the impact of varying the
measurement depth with a fixed total T count, on the efficiency of the
GoSC unit approach and identify the optimal value in particular
regimes. In addition to the Game of Surface Codes method of paralleli-
zation, we incorporate a method that uses AutoCCZ factories.32 For
this method, we relied upon the ancillary files of Gidney and Ekerå31

and adapted them to be flexible enough for our broader (circuit agnos-
tic) considerations. Our intention with the routing overhead with the
AutoCCZ factories is to cover a wide range of possible circuit charac-
teristics; while it may be an over estimation for some specific circuits,
it may also represent an under estimation for some worst-case situa-
tions. We accomplish our aim of quick and general resource estima-
tion as a function of algorithm meta information, and hardware
characteristics, by contrasting the upper-bound scenario of GoSC
units, with a more heuristic utilization of AutoCCZ factories. With
detailed knowledge of the input circuit, further optimizations of the
footprint configuration are possible, but generally, these must be
performed on a case-by-case basis and are non-trivial to automate.
The tool used to generate the results presented in this paper is
available upon request. We use the latest logical resource require-
ments for breaking elliptic curve encryption47,48 and estimate the
number of physical qubits required to break the encryption of
Bitcoin keys in the small amount of time it would actually pose a
threat to do so, all as a function of both the code cycle time and
base physical error rate.
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III. RESULTS

To calculate the results presented in this section, we use various
surface code strategies, including the Game of Surface Codes scheme,
which uses units to parallelize layers of T gates18 and AutoCCZ facto-
ries,31,32 which are both highlighted in Sec. II.

A. Simulating FeMoco as a function of the code
cycle time

There has been extensive research into both algorithmic
development and resource estimation in the field of fault tolerant
quantum chemistry, and one of the focus points has been the
FeMo-co catalyst.39–42 An improved understanding of the FeMo-
co catalyst could provide considerable efficiency improvements to
nitrogen fixation, which currently represents around 2% of the
world’s energy usage. We start with some of the latest algorithmic
developments by Lee et al.42 and investigate the feasibility of
achieving a reasonable run time for different code cycle times and
different surface code strategies. The associated logical resources
required are 2196 logical qubits and 6.7 � 109 Toffoli gates.

In Fig. 1, we compare two distinct methods of trading space for
run time up to the reaction limit (the conjectured time optimal
limit63). The two scatter trends utilize AutoCCZ factories with differ-
ent code cycle times of 1 ls, corresponding to a future superconduct-
ing device, and 235 ls, corresponding to a future shuttling based
trapped ion device.19 Each trend starts with one AutoCCZ factory;
from there, the number of factories is incremented, and at each step,

the code distance is calibrated and the resulting run time and physical
qubits are plotted. Initially, the total qubit footprint is dominated by
the data blocks, whereas the run time is bottle necked by the magic
state production, i.e., going from one factory to two halves the
expected run time. Therefore, while this is the case, adding factories
results in an improvement to the space-time volume, and this can
sometimes allow for a reduction in code distance, which may result in
an actual reduction in total qubit count. Each time a factory is added,
the magic state consumption rate per beat is defined to determine
whether the routing overhead needs to be increased as described in
Sec. IIH. What is considered to be a desirable run time will largely
depend on the importance of the problem being solved and by the
speed and quality of the classical alternatives. With the one AutoCCZ
factory, the superconducting device completes in around 10days with
7.5 � 106 qubits, whereas the trapped ion device requires 2450 days
and the same number of qubits, where 10 days may be considered a
quantum advantage for this use case where classical computers stand
no chance of providing a meaningful answer, perhaps 2450 days would
not. By parallelizing the magic state production, the trapped ion device
can reach the run time of 10 days requiring 600 � 106 qubits. The fac-
tor difference between the physical qubit count here is less than the
factor difference between the code cycle time because initially, adding
factories is a favorable space time trade until the total qubit footprint
becomes dominated by the factories at which point the trade becomes
linear. The good news for hardware with slower code-cycle times is
that it will often be possible to still reach desirable run times, provided
enough physical qubits are available. However, the associated qubit

FIG. 1. Physical resource estimates for a ground state energy calculation of the FeMoco molecule to chemical accuracy as per the logical resource requirements of Lee et al.42

The associated logical resources required are 2196 logical qubits and 6.7 � 109 Toffoli gates. The run time and associated physical qubit count are plotted for different surface
code strategies and code cycle times. A code cycle time of 1 ls and reaction time of 10 ls are considered, which may correspond to future superconducting devices, in addi-
tion to a code cycle time of 235 ls with a reaction time of 70 ls, which may correspond to a future shuttling based trapped ion architecture.19 The base physical error rate is
set to 10�3, the final distillation error probability is at most 5%, and the final topological error probability is at most 1%. The method from A Game of Surface Codes (GoSC)18

is utilized where layers of T gates are parallelized using “units” and is shown for the code cycle time of 235 ls. The three distinct trends all with dashed lines correspond to dif-
ferent measurement depths given as a fraction of total non-Clifford gate count, Tcount. A beat limited approach (i.e., limited by the magic state consumption rate of the single
data block) through the GoSC lens is plotted as a square and diamond. With the GoSC approach, the improved distance T gate factories of Litinski18 were used, where their
distance is calibrated separately to the data blocks. A distinct method of parallelization is utilized here, which uses AutoCCZ factories,31,32 enabling all of the Toffoli gates within
a given measurement layer to be potentially performed in parallel. The AutoCCZ approach is plotted for the two code cycle times of 1 and 235 ls as joined markers where the
trend starts with 1 AutoCCZ factory and sequentially adds factories, each represented by a data point, up until the reaction limit is reached. The reaction limit for a given mea-
surement depth is plotted and is labeled with the measurement depth expressed as a fraction of the total non-Clifford gate count, Tcount, Tcount/10, and Tcount/100.
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overhead may appear daunting and implies that hardware with slower
code cycle times will have to be more scalable to compete, assuming
equal error rates and physical connectivity. We plot for a range of pos-
sible measurement depths, labeled as a fraction of the total Toffoli
count, as this was not provided along with the other logical require-
ments.42 In the AutoCCZ scheme, the measurement depth does not
directly impact the efficiency of the approach, instead it only deter-
mines in combination with the reaction time, what the time optimal
(reaction) limit is. The labels then indicate the reaction limit, the point
at which the trend would end, given that measurement depth.

The assumption of a base physical error rate of 10�3 is often
made in the literature31 and may be representative of two qubit gate
fidelities that have already been achieved experimentally, depending
on the potential caveats highlighted in Sec. II B. Trapped ion architec-
tures have achieved some of the highest gate fidelities to date22–26 and,
generally, exceed that of superconducting devices;72,73 for that reason,
here, we provide the resource estimate for the more optimistic value of
10�4 for the base physical error rate, paired with the code cycle time
that may correspond to future trapped ion devices. Instead of the 600
� 106 physical qubits that were required for a run time of 10 days,
now with a base physical error rate of 10�4, only 60 � 106 physical
qubits would be required. Although here the factor improvement of
the base physical error rate is approximately equal to the factor
improvement to the physical qubit requirement, this will not always
be the case. The factor difference will depend on the proximity to the

threshold of the code, and we investigate the impact of the base physi-
cal error in more detail in Fig. 2(b).

In Fig. 1, we also include the Game of Surface Codes (GoSC)
approach to trading space for time,18 where measurement layers are
parallelized with constructs called “units.” Each unit contains its own
copy of the data block and enough factories to produce the number of
magic states within the measurement layer within the time it takes to
prepare the unit, which scales with both the number of magic states
per layer and the number of abstract qubits. Units can be incremen-
tally added; each one added reduces the final run time up until the
reaction limit is reached. The dashed lines in Fig. 1 use units along
with improved T gate factories53 where it is assumed that 4T gates are
required to decompose a Toffoli gate.18,56 The GoSC approach is plot-
ted only for the code cycle time of 235 ls, but three trends are included
for the different measurement depths as a fraction of the total Toffoli
count. The efficiency of the GoSC approach (in addition to the reac-
tion limit) is dependent on the measurement depth as can be seen. In
Sec. III C, we investigate the impact of the measurement depth on the
final qubit requirement to reach a fixed run time for the GoSC
approach.

It can be seen in the figure that the AutoCCZ approach provides
more favorable final resource estimates than GoSC units in this sce-
nario. The largest contributing factor to this difference appears to be
the initial setup cost for the unit approach, which is nearly an order of
magnitude increase in qubits for no appreciable speed up (with

FIG. 2. The number of physical qubits required to break Bitcoin’s 256 elliptic curve encryption with a fixed maximum run time as a function of the code cycle time and base
physical error rate. Using the latest algorithmic development for quantum circuits for elliptic curve encryption,47 the depth optimized approach is chosen requiring 5:76� 109 T
gates, 2871 logical qubits, and a T (measurement) depth of 1:88� 107. These trends utilize AutoCCZ factories to trade space for time to reach the desired run time and
assume that a CCZ state can be efficiently traded for 2 T gates.57 Assuming the relationship between reaction time (RT) and code cycle time (CC) of RT ¼ CC=4þ 10 ls,
which is motivated in Sec. II. (a) Physical qubit requirement as a function of code cycle time for maximum run times of 10min, 1 h, and 1 day. The trends start from the chosen
code cycle time of 10�8 and end at the right due to reaching the reaction limit before reaching the desired run time. We use a base physical error rate of 10�3 and a final out-
put error of �6%. (b) Physical qubit requirement as a function of the base physical error rate for a maximum run time of 1 h and code cycle time of both 1 and 100 ls. The
trends start from the chosen base physical error rate of 10�5 and end at the right due to the AutoCCZ factory being no longer able to reach the desired distillation fidelity given
the base physical error and number of required states.
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measurement depth ¼ Tcount=10). This is in stark contrast to the
AutoCCZ approach, which initially takes very favorable space-time
trades by increasing the number of factories. As the rate of paralleliza-
tion increases in the AutoCCZ approach, eventually, entangled copies
of the data block are made to maintain sufficient access hallways
between the data block and distillation blocks. Both the AutoCCZ and
GoSC approaches converge toward an equal linear trade between
space and time. It should be restated that the GoSC approach can be
considered a true upper-bound estimate, functional for any general
circuit, whereas our utilization of the AutoCCZ factories is more heu-
ristic and may represent an underestimation for some specific circuit
inputs, see Sec. II I for more discussion on this.

In Fig. 1(a), the beat limited method is included for both code
cycle times as diamond and square points, i.e., no units and the com-
putation rate are limited by the data blocks magic state consumption
rate. These points use T gate factories and the fast data blocks from
GoSC, which have size scaling as 2nþ

ffiffiffiffiffi
8n
p

þ 1 for n logical qubits
and can effectuate T gates at a maximum rate of one per beat (d code
cycles). The number of T factories is chosen to match the rate of magic
state consumption of the fast data blocks. The beat limited situation
provides comparable run times to the single AutoCCZ factory and
requires a similar number of physical qubits.

To conclude this section, it appears that the AutoCCZ factories
are the favorable approach to trade space for time up to the reaction
limit, but a more detailed investigation into the underlying assump-
tions of both methods is warranted. These resource estimates are solely
a function of algorithm meta information such as total T count, mea-
surement depth, and the number of logical qubits. The surface code
configuration can be optimized when paired with detailed knowledge
of the input algorithm, but this process is non-trivial to automate, as
we have done in this work as a function of code cycle time. Future
hardware that expects to have considerably slower code cycle times
than the superconducting devices may still be able to reach desirable
run times, provided enough physical qubits are available, which fur-
ther emphasizes the importance of scalability. The associated qubit
overhead factor will range between less than 1 (here �0:3) and 1,
times the difference in the code cycle time depending on the relative
degree of parallelization in the comparison. Algorithms should be
optimized by minimizing the measurement depth if the reaction limit
is restrictive. The physical qubit requirement may be reduced if the
underlying hardware has access to low overhead mid-range physical
connectivity, as discussed in Sec. II F.

B. Breaking Bitcoin’s EC encryption

Breaking encryption has received a lot of attention in the quan-
tum computing community since Shor’s breakthrough algorithm,74

which provides a near exponential speedup for prime factoring that
has direct implications for breaking RSA encryption. Gidney and
Ekerå provide algorithmic improvements in addition to the surface
code strategies for breaking RSA encryption, and they estimate that 20
� 106 qubits running for 8 h could break it with a code cycle time of 1
ls.31 In a blueprint for a shuttling-based trapped ion device, which
estimated the code cycle time to be 235 ls,19 it was originally estimated
that breaking RSA encryption would require 110 days and 2 � 109

qubits with a base error of 10�3, implying a device occupying an area
of 103:5� 103:5 m2. With the latest algorithmic and surface code
strategy improvements, we can reduce this estimate to requiring

instead a run time of 10 days (a factor 10� faster) and 650 � 106

qubits, which would imply a device size of area 60� 60 m2. With a
base physical error of 10�4, the device size would reduce to 18� 18
m2, and further reductions may be possible if one were to make use of
the flexible mid-range connectivity that is available. Using the same
relative improvement factor from mid-range connectivity as in the
design blueprint,19 starting from the 10�4 case, we might expect a
device of size 2:5� 2:5 m2 to be sufficient. This is, indeed, a rough
estimate, and a more rigorous understanding of how to best make use
of mid-range connectivity would be required to confidently provide
the performance improvements relative to a nearest neighbor
approach.

Bitcoin uses the Elliptic Curve Digital Signature Algorithm
(ECDSA), which relies on the hardness of the Elliptic Curve Discrete
Log Problem (ECDLP), and a modified version of Shor’s algo-
rithm46–48 can provide an exponential speedup using a quantum com-
puter for solving this problem. The encryption of keys in the Bitcoin
network is only vulnerable for a short window of time, around 10min
to an hour depending on the fee paid, as described in more detail in
Sec. I B, and this makes it a well-suited problem for our investigation.
In the work of Aggarwal et al.,43 the potential threat of a quantum
attack on the Bitcoin network is investigated, and two main vulnerabil-
ities are contrasted, i.e., proof of work (mining) and the encryption of
private keys. Following the conclusions of Aggarwal et al., we highlight
the differences between these two vulnerabilities and the associated
quantum speed up in Sec. I B. Here, we focus on the most likely threat,
the encryption of private keys, and go beyond the physical resource
estimates of Aggarwal by including the latest improved logical algo-
rithmic requirements of H€aner et al.47 and by quantifying how the
number of physical qubits changes based on the desired run time and
the code cycle time of the hardware. In the following, we will present
our resource estimates for this problem and also contrast with the
work of Aggarwal et al.43

In Fig. 2(a), we plot the number of physical qubits required to
break the elliptic curve encryption of Bitcoin within a run time of
1 day, 1 hour, and 10min, as a function of the code cycle time. We use
the logical resources of the depth-optimized approach provided by
H€aner et al.47 for a 256 bit encryption, which corresponds to 5:76
�109 T gates, 2871 logical qubits, and a measurement depth (Tdepth) of
1:88� 107. The measurement depth of this algorithm is low relative
to the Tcount, at �Tcount=300, implying that there is a lot of room for
parallelization before the reaction limit is reached. In Fig. 2(a), it can
be seen that it would require 317 � 106 physical qubits to break the
encryption within one hour with a code cycle time of 1 ls. To break it
within 10min with the same code cycle time, it would require 1.9
� 109 physical qubits, whereas to break it within 1 day, it would
require only 13 � 106 physical qubits. The horizontal period most evi-
dent in the dash-dotted black trend for a run time of 1 day is because
the desirable run time can be reached for those code cycle times with
only 1 AutoCCZ factory. Once the code cycle time increases suffi-
ciently, it is then necessary to begin adding AutoCCZ factories to main-
tain the desired run time. Hardware with considerably slower code
cycle times than 1 ls will need to be able to reach larger device sizes to
break the encryption within the allotted time. Even for code cycle times
of 1 ls, this large physical qubit requirement implies that the Bitcoin
network will be secure from quantum computing attacks for many
years. High-value transactions are likely to pay high fees, ensuring that
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they are processed with higher priority and, therefore, would require
considerably more physical qubits to break the encryption in time. The
Bitcoin network could nullify this threat by performing a soft fork onto
an encryption method that is quantum secure, where Lamport signa-
tures75 are the front-running candidate, but such a scheme would
require much more memory per key. The bandwidth of Bitcoin is one
of the main limiting factors in scaling the network, and so, changing
the encryption method in this way could have serious drawbacks.

The logical resources provided by H€aner et al.47 for breaking
elliptic curve encryption improve on the prior state of the art of
Roetteler et al.48 by over an order of magnitude. In the quantum threat
to Bitcoin work of Aggarawal et al.,43 the older and less favorable logi-
cal resource requirements were considered.48 Aggarawal et al. estimate
that it would require 6.5 days and 1.7 � 106 physical qubits to break
the encryption with a base physical error rate of 5� 10�4. The code
cycle time is not explicitly defined, and instead, a physical gate rate of
66.6MHz is assumed, which we estimate would correspond to a code
cycle time of approximately 0.1 ls. Next, we calculate the physical
resources using the assumptions and logical requirements of
Aggarawal et al., and we find that a device with three AutoCCZ facto-
ries would complete in seven days and require 5� 106 physical qubits.
There is rough agreement between the final physical resources between
our methods; the remaining discrepancy originates from the differing
estimates of the number of physical qubits that are required per logical
(abstract) qubit. The conversion factor between logical to physical
qubits of Aggarawal et al. is stated to be 735.5 for this problem, which
should include the overhead associated with the degree of encoding
(code distance), distillation factories, and routing space. We find that a
code distance, d, of 25 is required to maintain a final failure rate below
6%, implying at least 2� d2, or 1250, physical qubits per logical qubit.
When we include the distillation and routing overhead, our final phys-
ical to logical qubit conversion factor is 2140. While a higher final fail-
ure rate may be tolerable in a heralded problem such as breaking
encryption, we estimate that a code distance of at least 22 would be
required, as a code distance of 21 or lower would lead to final failure
rates of�100%.

H€aner et al.47 provide asymptotic formulas for the resources
required to break the elliptic curve encryption as a function of the
input encryption bit size, n (Bitcoin uses 256 bit encryption). The total
logical space-time volume (T count � logical qubits) scales to leading
order with encryption bit size asOðn4= log nÞ, which can be compared
to the exponential time complexity of classical methods, O 2

ffiffi
n
pð Þ. We

calculated the physical resources to break the elliptic curve encryption
as a function of bit length, and one may expect the results to follow the
same form of dependence as the total logical space-time volume. This
is because we would expect the total physical qubits required to scale
linearly with the total logical space-time volume, and this is generally
the case except for variations due to differing efficiencies of the error
correction set up at different regimes (ratio of the logical qubits to gate
requirement and the degree of parallelization required). We fit the
physical resources as a function of bit length with a function contain-
ing the terms that result from multiplying the asymptotic trends of T
count and logical qubit count from Table 4 in the work of H€aner
et al.47 The generated trend fit the data well for bit string sizes in
excess of 256, with some discrepancies below this value, which is likely
due to the minimal degree of parallelization that was required for
lower bit strings. For a code cycle time of 1 ls, a base physical error

rate of 10�3, and a desired run time of 0.1 day, the total physical qubits
required to break the encryption as a function of bit length, n, are well
described by the following equation as 0:011� n4:191. The fit coeffi-
cients here are a function of the desired run time and code cycle time
of the hardware, which dictate the required degree of parallelization.
For 250 data points of bit length in the range of 100–2000, the average
percentage error between the data points and the trend was 3.7%. The
run time was maintained below 0.1 days with these hardware assump-
tions up to a bit length of 1730, albeit requiring 4� 1011 physical
qubits, at this point, the maximum degree of parallelization was
reached. Hence, we show that the required number of physical qubits
to break the elliptic curve encryption in a defined fixed duration scales
only polynomially, with the bit length of the encryption, in contrast to
classical methods that require exponential time.

In Fig. 2(b), we plot the required number of physical qubits to
break the 256 bit elliptic curve encryption within 1 h as a function of
the base physical error rate. In Sec. II B, the relationship between the
base physical error rate and an experimentally achieved gate fidelity is
explained in more detail. We plot two trends for code cycle times equal
to 1 and 100 ls, which begin at the selected error rate of 10�5. The
trends end at the right at a physical error rate of �2:8� 10�3 when
the AutoCCZ factory can no longer produce a state with sufficient
fidelity given the error rate and number of required states. High code
distance and multi-tiered T gate factories would be able to continue
further, but at a value of the 1% error rate, the threshold of the surface
code is reached. With a physical error rate higher than this threshold,
increasing the code distance actually results in a larger logical error.
Three distinct distances are calibrated according to the base physical
error rate; first, the final topological error is maintained below 1% by
adjusting the code distance associated with the data block. Next, there
is a level 1 code distance and a level 2 code distance associated with
the AutoCCZ factory, which are calibrated to ensure that the final dis-
tillation error is maintained below 5%, as per the ancillary files of
Gidney and Ekerå.31 We assess a wide range of code distances for the
AutoCCZ factory and choose the set that minimizes the factory vol-
ume (i.e., number of qubits � duration per cycle) while maintaining
the desired error rate. With a code cycle time of 1 ls, it requires
317� 106 physical qubits to reach the 1 h run time with a base error of
10�3; this is reduced down to 33 � 106 for a base error of 10�4, i.e., a
factor 10 reduction. The relative reduction in the qubit overhead, asso-
ciated with an order of magnitude improvement in the base error, is
greater when the comparison is performed closer to the threshold of
the code. For example, from 2:8� 10�3 to 2:8� 10�4, the qubit
reduction is instead a factor 30 (in contrast to the factor 10 of the pre-
vious comparison). This highlights the importance of reaching base
physical error rates of 10�3 and lower.

C. Finding the optimal measurement depth

Logical algorithms may be optimized for particular properties,
for example, either the total T gate count, Tcount, the number of mea-
surement layers, Tdepth, or logical qubit count may be minimized.70,71

In the elliptic curve encryption breaking algorithm of H€aner et al.,47

logical requirements are stated for each of these three possible optimi-
zations, where in Sec. III B, the measurement depth minimized
approach was chosen. The reaction limit (conjectured to be the fastest
an algorithm can be run) is determined solely by the measurement
depth and reaction time (i.e., independent of total gate count and code
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distance), and so, the depth optimized approaches are the most suit-
able when room for parallelization is desired. The ratio of the measure-
ment depth to total gate count is the inverse of the number of T gates
per layer, Tlayer (when considering T gates as opposed to some other
non-Clifford operation). In the GoSC method of parallelization with
units, all aspects of the cost depend on the number of T gates per layer,
including the footprint of the unit, the time it takes to prepare a unit,
and the number T gates that are effectuated within the preparation
time.

In Fig. 3, we plot the efficiency of the GoSC method as a function
of this measurement depth with a fixed total gate count, and it can be
seen that there is a measurement depth that leads to a minimum phys-
ical qubit footprint. This is in contrast to the AutoCCZmethod, where,
instead, the measurement depth only plays a role in determining the
reaction limit, and it would appear in these figures as a horizontal line.
In Fig. 3(a), we plot the required number of physical qubits to reach a
desired run time for the logical resources required to simulate
FeMoco.42 We include three plots for different code cycle times and
maximum run times. As expected in this regime prior to reaction-
limited, it can be seen that it is the ratio of the code cycle time and
maximum run time that determines the physical qubit requirements.
We show that the optimal measurement depth ratio is not necessarily
“as small as possible,” and for this situation, it lies between 10�3 and
10�2. The discontinuous movements result from an increase in the
required number of units as the measurement depth ratio becomes
larger. A less demanding run time requirement necessitates fewer units
for a given measurement depth, which results in less frequent and
larger relative downward movements. The two distinct discontinuous

movements on the blue trend (for a code cycle time of 10 ls and run
time of 1 day) are due to the topological code distance changing as the
space time volume changes. The black trend with a run time of 10 days
can maintain the desired run time for larger measurement depths than
the dotted orange line because the proportional difference in the
desired run time (a factor 10) is greater than the proportional differ-
ence in their associated reaction times. The relationship between the
code cycle time and reaction time that we assume in this work is
explained in Sec. II C.

In Fig. 3(b), we again investigate the efficiency of the parallelization
but now for an abstract algorithmic requirement with fixed space-time
volume. Three trends are shown with logical qubits, n, corresponding to
500, 1000, and 2000, where the total T gate of the algorithm is set to
maintain the fixed space time volume ðn� TcountÞ of 5� 1013. The
trends end at the right when the reaction limit is reached where 2000 is
the last to end because it has the lowest total T gate count, which, in
turn, relates to a lower reaction limit for a fixed measurement depth
ratio. The optimal measurement depth ratio is larger for lower logical
qubit counts; for 500, the optimal is 0:6� 10�3, whereas for 2000, the
optimal is 0:3� 10�3. In the following, we investigate the relationship
between the optimal measurement depth and logical qubit requirement
of the algorithm in more detail.

1. Optimal measurement depth and logical qubit
requirement

We have shown that the optimal measurement depth given a
fixed total gate count for the GoSC approach is non-trivial and can be

FIG. 3. Investigating the efficiency of the Game of Surface Code Units approach18 as a function of the ratio of the measurement depth to total gate count. The total qubit foot-
print is plotted for a particular desirable run time and code cycle time, with a base error of 10�3 and final output error of 6%. The trends start at the chosen measurement depth
ratio of 10�4 and end when the reaction limit is reached before the desired run time. (a) The required number of physical qubits for a ground state energy calculation of
FeMoCo with the Tensor Hyper-contraction (THC) qubitization method of Lee et al.42 to have a maximum run time as stated for code cycle times of 10 and 1 ls. (b) The
required number of physical qubits for an algorithm with fixed space-time volume of 5� 1013, where the number of logical qubits is labeled and the total T gate count is varied
to maintain the stated volume. The space-time volume was chosen to be representative of the quantum advantage cases assessed in this work.
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a function of both the number of logical qubits, and on how demand-
ing the desired run time is (i.e., the number of units needed). In this
section, we investigate the relationship between the optimal measure-
ment depth and the number of logical (abstract) qubits of the algo-
rithm. The average number of T gates per measurement layer, Tlayer, is
the inverse of the previously stated ratio of measurement depth to total
gate count, i.e., Tlayer ¼ Tcount=Tdepth. In Fig. 4, for a particular value of
the total T gate count, Tcount, we calculate the optimal value of T gates
per layer, Tlayer, which is then converted into a ratio of the number of
logical qubits. We include multiple trends for different numbers of log-
ical qubits and plot as a function of the total T gate count. This
involves identifying the value of Tlayer at which the physical qubit
requirement is minimized as in Fig. 3, for each particular logical
resource requirement. We choose different qubit numbers and mini-
mum run time values to highlight the various dependencies. We can
see four distinct behavioral phases for each trend; first, at low T gate
counts, the minimum run time can be reached with no parallelization,
and so, we state the optimal T per layer as 0 (whereas truly it is inde-
pendent). The next phase is an oscillating pattern where the optimal T
per layer ratio varies widely with a decreasing amplitude as the T gate
count increases. The beginning of this phase is determined by the end
of the previous one, where the no-parallelization (beat limited) method
can no longer reach the desired run time, which is determined by the
ratio of the code cycle time and minimum run time. The amplitude of
the oscillation is largest at the start of parallelization because only a
small number of units are initially required, and an increase in T count
requirement can mean the number of required units increases, for

example, the optimal number of units may change from 3 to 4, but the
associated Tlayer for this minimum can vary widely, and the magnitude
of that variation reduces as the overall number of required units
increases. The large variation in the optimal ratio does not imply a
large variation in the required number of physical qubits. In the next
phase, the optimal T per layer ratio is relatively constant at an equilib-
rium value, which is solely determined by the number of logical
(abstract) qubits in the algorithm, where the greater the number of
logical qubits, the fewer T gates per layer (as a percentage of the logical
qubits) are required for the optimal physical qubit overhead. For logi-
cal qubit numbers (N) in excess of 100, the equilibrium value of the
optimal number of T gates per layer is well described by the following
equation: Tlayer ¼ 1:9ð5ÞN0:70ð5Þ, which we estimated by taking an
average of the points within the equilibrium phase and fit with linear
regression. The final phase starts when the algorithmic requirement
becomes too demanding for the minimum run time, and so, the Tlayer
rises despite the loss in efficiency until the number of logical qubits is
reached, which, here, we define as the cutoff point, where finally even
the reaction limit (one reaction time per T layer) is not sufficient.

The potential degree of control over the average number of T
gates per layer during algorithm construction and optimization will
determine whether it is beneficial to consider the optimal value as cal-
culated with the techniques used in Fig. 4. There are optimization
techniques that can minimize either the Tdepth and Tcount,

70,71 but they
generally trade-off with one another, where minimizing one may
increase the other. Furthermore, this analysis is specific to the GoSC
approach of parallelization with units, and earlier, we have shown that

FIG. 4. The optimal value of the number of T gates per measurement layer, shown as a fraction of the number of logical qubits, plotted as a function of the T gate count of the
algorithm. Base physical error of 10�3 and code cycle time of 1ls. Different plots for varied desired run times and logical qubit count, 1 day and 100 qubits in blue, 1 day and
1000 qubits in orange, 1 day, 0.1 day, and 1000 qubits in green, and 10 000 qubits in black. The maximum value of T gates per layer is limited to the number of logical qubits
for each trend. There are four distinct behavioral phases for each trend; first, the trends read 0 at the left, while the beat limited approach can reach the desired run time, and
then units are introduced following the GoSC18 method. The next phase is an oscillating pattern where the optimal T per layer ratio varies widely with a decreasing amplitude
as the T gate count increases. The amplitude of the oscillation is largest at the start of parallelization because only a small number of units are initially required, and an
increase in T count requirement can mean the optimal number of required units increases, but the associated Tlayer for this minimum can vary widely; the magnitude of that var-
iation reduces as the overall number of required units increases. In the next phase, the optimal T per layer ratio is relatively constant at an equilibrium value, which is solely
determined by the number of logical (abstract) qubits in the algorithm. For logical qubit numbers (N) in excess of 100, the equilibrium value of the optimal number of T gates
per layer is well described by the following equation: Tlayer ¼ 1:9ð5ÞN0:70ð5Þ, which we estimated by taking an average of the points within the equilibrium phase and fit with lin-
ear regression. The final phase starts when the algorithmic requirement becomes too demanding for the minimum run time, and so, the Tlayer rises despite the loss in efficiency
until the number of logical qubits is reached, which, here, we define as the cutoff point, where finally even the reaction limit (one reaction time per T layer) is not sufficient.
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the AutoCCZ method of parallelization produces more favorable final
resource estimates. As mentioned, the AutoCCZ method does not dis-
play this rich behavior with the efficiency dependence on the measure-
ment depth, and we believe that further research is warranted to
compare the underlying assumptions of these two methods of
parallelization.

IV. CONCLUSION

Within a particular time frame, the code cycle time and the num-
ber of achievable physical qubits may vary by orders of magnitude
between hardware types. When envisaging a fault tolerant implemen-
tation, there are numerous decisions to be made based on a preference
for either space or time. In this work, we compare surface code strate-
gies of parallelization that allow one to speed up the computation until
the reaction limit is reached. Most of the fault tolerant resource estima-
tion work has focused on code cycle times corresponding to supercon-
ducting architectures. A space optimized quantum advantage case
study translated for hardware with slower code cycle times may lead to
run times in excess of 1000 days, and so parallelization would have to
be performed to reach desirable run times. In this work, we have calcu-
lated the required number of physical qubits to reach a given desirable
run time for two representative quantum advantage cases (chemistry
and encryption) across a range of code cycle times. The feasibility of
using these time optimization strategies will depend upon the number
of physical qubits achievable within a device; therefore, the scalability
of an architecture will play an important role in determining whether
a quantum advantage is achievable. We contrast two methods of paral-
lelization to simulate the FeMo-Co catalyst; first, a Game of Surface
Codes approach that should be considered an upperbound, and sec-
ond, a more heuristic utilization of AutoCCZ factories. We find in this
situation that the AutoCCZ factories produce more favorable resource
estimates, and the difference is mostly due to the high initial set up
cost of parallelization with Game of Surface Code Units. With a single
AutoCCZ factory, a superconducting device with a 1 ls code cycle
time would require 7.5� 106 qubits to simulate FeMo-co in�10 days,
whereas a shuttling based trapped ion device with a 235 ls code cycle
time would take 2450 days. By increasing the number of factories, the
space-time trade is initially favorable (as opposed to linear), and the
trapped ion device can reach the same 10 day run-time with 600� 106

qubits. In this comparison, the factor difference between the physical
qubit requirement is �3� less than the factor difference in the code
cycle time. Trapped ion architectures have generally been shown to
achieve higher two qubit gate fidelities than superconducting devices,
and so we have calculated that if a base physical error rate of 10�4 was
achieved, the trapped ion device would instead require 60� 106 qubits
for the 10 day run time.

We have investigated the effect of varying the ratio of the T gate
count and T depth (the average T gates per layer) and identified the
optimal value for a constrained run time against general algorithmic
requirements. Here, we focused on the GoSC unit method of paralleli-
zation as it was unique in displaying rich T depth dependence.

We apply our methods to the logical resources required to break
the 256 elliptic curve encryption, which is used to secure public keys in
the Bitcoin network. We use the logical resource requirements of the
latest algorithmic developments, which improve on the previous state
of the art by�2 orders of magnitude. There is a small window of time,
approximately 10–60min, in which the public keys are available and

vulnerable after the initiation of a transaction. We quantify the num-
ber of physical qubits required to break the encryption in one hour as
a function of code cycle time and the base physical error rate. It would
require approximately 317 � 106 physical qubits to break the encryp-
tion within one hour using the surface code and a code cycle time of 1
ls, a reaction time of 10ls, and physical gate error of 10�3. To instead
break the encryption within one day, it would require only 13 � 106

physical qubits. If the base physical error rate was instead the more
optimistic value of 10�4, 33 � 106 physical qubits would be required
to break the encryption in 1 h. This large physical qubit requirement
implies that the Bitcoin network will be secure from quantum comput-
ing attacks for many years (potentially over a decade). Alternative
error correction techniques, in particular those that benefit from a
more flexible physical qubit connectivity as often found in trapped
ion-based quantum computers, could potentially offer considerable
improvements to the requirements, but the lower rate of logical opera-
tions must also be factored in. The Bitcoin network could nullify this
threat by performing a soft fork onto an encryption method that is
quantum secure, but there may be serious scaling concerns associated
with the switch. We hope to motivate continued research into end-to-
end resource estimation for alternative error correction schemes to the
surface code, and to determine how best to make use of the available
physical connectivity of different quantum hardware platforms.
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